Multi-lineage potential of human mesenchymal stem cells following clonal expansion.
نویسندگان
چکیده
Bone marrow contains mesenchymal cells that can be isolated and grown in vitro. Using appropriate treatment protocols such cultures can be induced to differentiate to yield osteoblasts, adipocytes, and chondrocytes. However, previous experiments had not addressed the question whether single pluripotent stem cells exist and can give rise to these different cell lineages or whether bone marrow mesenchymal cell preparations represent a mixture of committed precursors. We have used human adult bone marrow-derived mesenchymal cells obtained from iliac crest biopsies to demonstrate clonal outgrowth after limiting dilution and we show that some clones can be expanded over more than 20 cumulative population doublings and differentiated to osteoblasts, adipocytes, and chondrocytes. Our data provide direct experimental evidence that cultures of bone marrow-derived mesenchymal cells contain individual cells that fulfil two essential stem cell criteria: (i) extensive self-renewal capacity and (ii) multi-lineage potential.
منابع مشابه
Human Amniotic Fluid Stem Cells: General Characteristics and Potential Therapeutic Applications
Introduction: Amniotic fluid contains a mixture of different cell types sloughed from the fetal skin, respiratory, alimentary and urogenital tracts, as well as the amnion membrane. As amniotic fluid develops prior to the process of gastrulation, many cells found in its heterogeneous population do not undergo lineage specialization. Therefore, amniotic fluid-derived mesenchymal stem cells (AF-MS...
متن کاملThe Potential of Menstrual Blood-Derived Stem Cells in Differentiation to Epidermal Lineage: A Preliminary Report
BACKGROUND Menstrual blood-derived stem cells (MenSCs) are a novel source of stem cells that can be easily isolated non-invasively from female volunteered donor without ethical consideration. These mesenchymal-like stem cells have high rate of proliferation and possess multi lineage differentiation potency. This study was undertaken to isolate the MenSCs and assess their potential in differenti...
متن کاملThe effect of amniotic membrane extract on umbilical cord blood mesenchymal stem cell expansion: is there any need to save the amniotic membrane besides the umbilical cord blood?
Objective(s): Umbilical cord blood is a good source of the mesenchymal stem cells that can be banked, expanded and used in regenerative medicine. The objective of this study was to test whether amniotic membrane extract, as a rich source of growth factors such as basic-fibroblast growth factor, can promote the proliferation potential of the umbilical cord mesenchymal stem cells. Materials and ...
متن کاملHuman Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro
Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...
متن کاملEXPANSION OF HUMAN CORD BLOOD PRIMITIVE PROGENITORS IN SERUM-FREE MEDIA USING HUMAN BONE MARROW MESENCHYMAL STEM CELLS
Ex vivo expansion of human umbilical cord blood cells (HUCBC) is explored by several investigators to enhance the repopulating potential of HUCBC. The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation. Using primary human mesenchymal stem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of musculoskeletal & neuronal interactions
دوره 2 1 شماره
صفحات -
تاریخ انتشار 2001